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Modelling Problem

Problem: predict and control the propagation of waves in
large and complicated electromagnetic environments.

“Complicated” Cavit ,
OmpHedte Wiy 1. Power enters cavity through aperture.

/ 2. Distributes itself throughout.

3. Induces voltage on the terminals of an
antenna.

Aperture

Complicated cavity model for:

€ reverberation chambers.
Antenna 4 wireless propagation channels;

€ avionic bay, naval compartments;

Incident Wave

What can we say without solving the full electromagnetic problem?

Statistical theory can simplify modelling




Wave Chaos

Random Coupling Model (RCM)

Arbitrary Enclosure

Port 1 (with losses “1/Q”)

M

Porti -7

Port 4 Port 2

Hemmady, PRL 94, 014102 (2005)

Most real life enclosures are ray-chaotic: small initial difference =
trajectories diverge exponentially in time.

Wave properties are extremely sensitive to boundaries = Wave Chaos

Statistical tools are used to describe transmission in such chaotic
enclosures
o Random Matrix Theory — universal properties of closed systems
o Random Coupling Model — incorporates system-specific properties




Random Coupling Model (RCM)

Break problems into component parts:

system dependent and system independent parts “Complicated” cavity

Aperture

Incident Wave

— &

4 b Antenna
Fields in cavity modify Currents 1n antenna

power through aperture modify fields in cavity

Source: G. Gradoni et al, IEEFE Trans EMC, vol. 567, issue 5, 8015.




RCM: System-specific part

conductor

2. Solve
1. Specity —iweE(x) =V x H(x)
E, = 2 Ve ) | i uH(x) = V x E(x)
aperture —> n
3. Find | Calculate admittance matrix describing z>0.

H, = —Elsnxes(xl)

I,= YY" k) V,

- .. ra e 0 dk 2k, _ . _
Sommerfeld radiation condition Y (ky=w/c)= \/;f e _22 e, "A-e,




Boundary value problem

E(x) H(X)

RC @ UnivPM

1. Formally expand fields of cavity in a basis of modes

E(x)= Y Ve (x) H(x)= Y (Ihy" (x)+1"*h}" (x))

2. Leads to exact expression for cavity admittance

- . em em l wms Wms . . |
Yss' (k ) \/72(]{2 k2 em k Vms ngl) = f dzxj_ es(XJ_) Hthl)

aperture




High frequency regime

Large, linear eigenvalue problem

. . em em l WZSW:ZS O ) . 0O
YU (k,) = \/72(13 e Ve’" k_o I W, = f d'x, e (x,)'nxh,

aperture

Eigenvalues: Eigenfunctions:
Random Matrix Theory Random Wave Hypothesis

Alternative approach: statistical model for eigenvalues and eigenfunctions




Eigenfunction complexity: statistical approach

How to capture field complexity? Modal patterns alike at high frequencies!
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RC @ UnivPM

Eigenvalues: Eigenfunctions:
Random Matrix Theory Random Wave Hypothesis
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Classical Chaos

Simple 2D deformations lead to dynamical mixing
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Lyapunov instability: divergent trajectories that are hard-to-predict, mixing.
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Theorem: (Poincare’) Perturbation lead to non-existence of
integrals of motions, including energy.

Ox, = e;”(sx&o

Lyapunov exponent
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Wave Chaos

1) Waves do not have trajectories

It makes no sense to talk about
@ “diverging trajectories” for waves

2) Linear wave systems can’ t be chaotic

Maxwell’ s equations, Schrodinger’ s equation are linear

3) However in the semiclassical limit, you can think about rays:
it is possible to define chaos in the ray-limit

Ox, =0 < @ ox, = e"6x, >>0

Wave Chaos concerns solutions of linear wave equations which,
in the semiclassical limit, can be described by chaotic ray trajectories
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From Ray chaos to Wave chaology

Quantum mechanics: Classical instability of trajectories results in complex
wavefunctions

Proc. R. Soc. Lond. A 413, 183-198 (1987)
Printed in Great Britain

THE BARERIAN LECTURE, 1987
Quantum chaology

By M. V. BErrY, F.R.S.
H. H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, U K.

Sir M. V. Berry (Lecture delivered 5 February 1987 — T'ypescript received 2 March 1987)

Bounded or driven classical systems often exhibit chaos (exponential
instability that persists), but their quantum counterparts do not. Never-
theless, there are new régimes of quantum behaviour that emerge in
the semiclassical limit and depend on whether the classical orbits are
regular or chaotic, and this motivates the following definition.

Definition. Quantum chaology is the study of semiclassical, but non-
classical, behaviour characteristic of systems whose classical motion ex-
hibits chaos.




Integrable billiards

|s trajectory stability related to eigenfunction structure?

T
A/
SN

Question: what is the Lyapunov exponent of the rectangular billiard?




Non-Integrable billiards and wave chaos
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Exact calculation hard, eigenfunction statistics accessible

13




Eigenvalue complexity: statistical approach

Stadium billiard

2 2
—(‘9 . )wn=k,%wn, buls = 0

Eigenvalues: Eigenfunctions:
Random Matrix Theory Random Wave Hypothesis
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Phase-space and Wigner function

Classical phase-space represents particle state space

Position, r @
Q=7 e
\ Momentum, p /

Wigner function represents waves in a dynamical (state) space

W(Q)=W(r. p)=(2i)d feikpSC(r+%,r—%)ds

Boundary

Combined positional and directional information on wave/ray density propagation




Wave phase-space

Berry’s idea: study wave phase-space structure to unfold
eigenfunction statistics

Com (”1”’2) ~ <1/Jn (’i)w: (r2)>

Quantum/wave phase-space is constructed through Wigner function

W(r,p)= feikpSCnm (r _ -;rz S=T, —rz)ds

D

Position r = location of trajectories
Momentum p = directions of propagation




Eigenfunction Statistics

Hypothesis: (Voros, Berry) The Wigner function of ergodic systems is
constant in the energy shell as it is formed by a continuum of momenta p

W(r,p) = VLQ(S(E—H(r,p))

Correlation function obtained by inverse Fourier transform

1 —ik 1 —ik
C (r,s)= e""W (r,p)dp=—1e""o(E-H|(r,p))dp
=J, (ks), 2D
~ sin(ks) -

ks .




Random Wave Hypothesis

Theorem: (Berry) Ergodic wave-functions are Gaussian random
variables reproduced by random plane wave superposition

\i/

1 ¥
— p(ik, 1+ x,
~ N 21 \ ) VK TN
N CLT: Zero mean GRV

—> OO

Source: Berry, Regular and irregular wave-functions, JPA, 1977

The autocorrelation function is not by itself sufficient to determine all statistical
properties of . However it is likely that for stochastic classical motion the phases of
the different contributions p to ¢ are uncorrelated, because the orbit would ac-
cumulate many action units # in its ‘unpredictable’ wanderings between passages
through the neighbourhood of ¢. This would imply that ¢ is a Gaussian random
function of q (Rice 1944, 1945, Longuet-Higgins 1956), whose spectrum at q is
simply the local average of the Wigner function ¥(q, p). For ergodic motion ¥ is




Ergodic eigenfunctions

Berry’'s hypothesis: m-th mode represented by N plane waves

N
¥, (r) %Ea exp(ik, T+ x,)
n=1

Find eigenfunction statistics from random plane wave superposition
Cms(rl’r2) =<7/Jm(’"1)ws (r2)>
=J, (k(r1 — rz)), 2D

sin(k(r1 — rz))
} k(r,-n,) » 9D
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Eigenfunctions in Stadium Billiards

Eigenfunctions are (on average) equally distributed —

K) Mixin =  Ergodicit
(K) g 9 y Source: Alex Barnett

'« =44 Behave locally like random waves!
~ (Berry Hypothesis — 1977)

20



Eigenvalue complexity: statistical approach

Stadium billiard

2 2
—(‘9 . )wn=k3wn, buls = 0

Eigenvalues: Eigenfunctions:
Random Matrix Theory Random Wave Hypothesis
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Statistics of spectra

Bohigas, Giannoni, Shmitt conjecture (1984)

BGS conjecture : “Spectra of time-reversal-invariant systems whose classical analogs
are K systems show the same fluctuation properties as predicted by GOE (alternative
stronger conjectures that cannot be excluded would apply to less chaotic systems, pro-
vided that they are ergodic). If the conjecture happens to be true, it will then have been
established the unmiversality of the laws of level fluctuations in quantal spectra already
found in nuclei and to a lesser extent in atoms. Then, they should also be found in
other quantal systems, such as molecules, hadrons, etc.”. The paper had been extre-

Dynamical system properties:
(K) Mixing = Ergodicity

Scroedinger vs Helmoltz

[ 9% 92 92 02 5
_2m (6:172 + ayz) d)n — nwn' - (ﬁ + 8_312) d)n - kn"/}na
¢n|5=0

Source: Stoeckmann. Seminaire Poincare’ 8006
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Statistics of Spectra

Eigenvalue interaction has an imprint of the classical dynamics

Sequence of Nearest Neighbor Spacings (NNS) L = k,f

IHH—HH +

E E, E, . E

0

{£,} —— AE,={E,-E,} n=1.N-1

Gap distribution?

()
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(Wigner’s) Random Matrix Theory

NNS shows universal statistical fluctuations!

Theorem: (Wigner) Probability distribution of NNS §,, belongs to
universality classes established by symmetries (e.g., time-reversal, parity).

T T
GOE Wigner Surmise: PI‘(S) = ESGXp _ZS

Theorem: (Berry-Tabor) Generic regular systems have randomly distributed
eigenenergies with Poisson distributed NNS

Regular Berry Surmise: PI‘(S) = eXp(—S)

24




Random Matrix Theory

Stadium, Sinai-Lorentz, Circle: we know their classical dynamics!

VA
i ‘\/‘(‘/(‘/\Y/Q\‘v,

XNNN
QAN

What are their eigenvalue gap (spacing) distributions?

Wigner surmise

1.0

1.0

(a)
Berry surmise

25




“"This is universality!”

To see the universality a magnification factor is needed:
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Boundary value problem

1. Formally expand fields of cavity in a basis of modes

E(x) = EV”" e (x) H(x) = 3 (10" (x) + 10! (x))

2. Leads to exact expression for cavity admittance

- I em em i wms Wms | 5 . .
Yss’ (k ) \/72(](2 k2 Vem k Vms wil’g = f d xJ_ es(XJ_) Hthl)

aperture

3. Replace exact modes with “chaotic” modes
(random plane wave superposition)

h“" =1lim

ni N— \/_ Ebjl

cos(k;-nz)cos(@; +k; X )

4. Replace exact spectrum with RMT spectrum, add dampling

kgekg(ml)
0
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Coupling coherence matrix

An interesting connection between free-space and
Boundary Value Problem is found

e e A2 VT2 rad \ 1"
o o et el
Coum i qww ()

Mok ; 4 ) Mok 2 4

Plugging back and rearranging terms yield the decomposition form

ss'

gcav _ iIm(grad)+[Re(£r“d)]l/2 '5'[Re(£rad)]l/2

Random matrix (normalised impedance) whose elements are
Renormalized Green’s functions of the closed cavity

Source: Gradoni et al, IEEE Trans EMC, vol. 57, issue 5, 2015. -




RCM for radiation problems
E=1Re(‘_/*.zcav.‘_/) l<=_zrad.‘_/ Z
2 = . .

Cavity impedance from RCM / v

“ =iIm(y")+ [Re(l_/md)]m é.[Re(gmd)]l/z

grad _ iIm(grad)_l_Re(gmd) (4

Coupling coefficients are GRVs

:

[N~
Il
II’*i

II"i

\ Modal overlapping!
( ) ~__E _k2 o = k2 _ BQ
+io — 2 >
RMT spectrum — <Ak2> OAk Ak
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Distribution of cavity impedance

An example of Monte Carlo computation...

7= (5)11 Diagonal normalized impedance

3.0 a=10

Probability Density

Probability Density
o O .\ N W
o o0 O O o O O

High loss: Gaussian distribution. Zero-loss: Lorenzian (Cauchy) distribution

GG et al. Wave Motion, 51-4, pp. 606-21, 2014




RCM for coexisting apertures and antennas

IN

cav _ iIm(érad) N [Re(érad):ll/z é.[Re(_m

Y iIm(Zrad)_l_I:Re(Yrad)]ln é,[Re(_m

Radiation problem: Find unknown aperture
currents and antenna voltages
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Why deforming an RC?

Curved diffractors diffuse energy
and suppress localised eigen-modes

S:m
Ss Y =
- S;m !' _ __\s;-
o35 P
\
S, Sa S:m - <.
&i / S:m S.m
C. S; -—
~ Y
(a) Classical RC (C1) (b) Chaotic cavity (C2)
15[ 1 -
! (a) \l |
o >
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° A D ’1 my
L\’ v !u&, \ A ' \
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Source: Selemani et al 59, p.325 TEMC 2017 ® 071 072 073 074 071 072 073 074
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UoN-UnivPM Chaotic RC

Suppress localization by tilting walls: polygonal billiards

4 m + Stirrer inside

~—— T

25m

6m

Need of design laws for large the chaotic RC

Source: Luca Bastianelli, Franco Moglie, Valter Mariani Primiani
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Wave Control: Modal density

Local Modal density can be increased by boundary deformation

Excess surface

Local eigenmode denisty, good antenna coupling and matching:

IR

R S
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Average modal density

RCM-based calculation of scattering statistics

1/2

g - 2221 (R01R02)
B (Zu + Zm)(Zzz + Zoz) - 212221

In presence of modal overlapping (reverberation), ¢ > 1 using first-order
Perturbation theory

2(RyR) (2380)" (z5)"™

S =
T (2202 + Z4)

Se

Assuming identical antennas

M ()

C >

)
Mr a> <|§a’c |2>

C

04
a

R
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Excess surface geometry

Unfolding, we get a simple scaling law

M S
=1+
M

r

excess

S

where the excess surface can be calculated from the geometry of deformations

S excess = ”E ﬁir‘ p; = 4ﬁsi - p.

N | — |— 00|

corner

edge

wall

ﬁii=<

= N %
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Physical bounds

. . s . M S
Mode density ratio for N identical spheres of radius r C oo | 4 —cxcess
M, S
Theory vs FDTD
1.3 1.3
" |e--e@ Theoretical (r: 0.5 m) 1 i e--e Theoretical (r: 0.5 m)
1.25L |#--¢ Theoretical (r: 1.0 m) - 1.250 ¢--¢ Theoretical (r: 1.0 m) -

e or:05m ¢ or:05m

f¢*r:1.0m ] I ¢ *r:1.0m

1.2

Zo 1.15
>

1.1

1.05

# Spheres # Spheres
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Chaotic RC @ UniNice, France

Spherical caps
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Classical dynamics and stability associated to
EM wave system:

« Simple deformations create non-integrable systems

« High frequency ray instability support wave chaos

« Random plane wave statistics constructed from
semi-classical phase-space

Spectral footprint of Chaos:

« Classical orbit instability change resonance gap

distribution S C
« Random Matrix Theory capture resonance statistics E P R

« Random Coupling Model includes coupling and
antenna EM radiation

THE

ROYAL

SOCIETY




Interconnected environments

PHYSICAL REVIEW E 86, 046204 (2012)

Impedance and power fluctuations in linear chains of coupled wave chaotic cavities

Gabriele Gradoni,” Thomas M. Antonsen. Jr.. and Edward Ott
Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, 20742 Maryland, USA
(Received 7 February 2012; revised manuscript received 16 July 2012; published 5 October 2012)

Idea: Propagate Wigner function

Py X e
Clence g Tochno0 iy
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Ongoing projects

e Controlling wave dynamics, synchronization,
Wave-front/mode shaping, order-from-chaos

* Transient chaos in semi-open - embedded -
systems and scattering media

[ ] PEC boundary
I PMC boundary
T

<1 ’i:':ig;ﬂ L
BEees

o
0 0.5 Ele / 2 25

<de 1>5

* Realistic EM environments are neither regular nor irregular:

Transport of Wigner function for mixed phase-space

e RCM-based wireless channel transfer matrix
for MIMO Systems (fading statistics from RMT)




Nottingham Wave Modelling Group

http://lwamoresearch.org/

Thank You!

Thanks to my collaborators: Innocenzo Pinto, Chris Smartt, Luk Arnaut, Franco Moglie,
Valter Mariani Primiani, Ramiro Serra, Andrea Cozza, Ulrich Kuhl, Fabrice Mortessagne,
Olivier Legrand, Martin Richter, Philippe Besnier, Dima Savin, Sven Gnutzmann, Justin
Coon, Alexander Ossipov, Carl Dettmann, Mark Dennis, Martin Sieber, ... and many more!

Papers, research, experimental validations:

http://anlage.umd.edu/RCM/
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WAMO Nottingham

Wave Modelling Research Group (wamoresearch.orgs)

r The Uniyersitg of
~ ®' | Nottingham \
UNITED KINGDOM - CHINA - MALAYSIA Mathematics
David Thomas
L /
’ \\,ﬂ! SIry. — I

s, “%  INsTITUTE FOR RESEARCH IN 4‘;{ 2
Close Collaboration with - »  ELECTROMNICS

T S APPUED PHYSICS

Ed Ott Steven Anlage Tom Antonsen 44




Reverberation Chamber

Example of “Complicated” closed environment: The mode-stirred RC

b/

Stochastic field generator:

» [sotropic
» Uniform
* Ergodic

Superposition of multiple reflected waves
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Electromagnetic Coupling

Open environments: coupling of external radiation into environment

Aircraft compartments (Tait, IEEE EMC 2011)

Coupling of external radiation is a complex process (high sensitivity to frequency).

Why?




