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Ne= electron density
B  =magnetic field 
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1. SAFE Project: Generalities & 
Swarm Mission
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- SAFE (Swarm for Earthquake study) aims at searching pre-EQ 
signals due to the lithosphere-atmosphere-ionosphere 
coupling  (LAIC*) in Swarm satellites and other kinds of data

- Systematic, multiparameter & multi-platform approach to 
study the possible effects (at satellite altitude and ground) of 
the slow preparation process in the lithosphere that leads to 
the EQ.

- Main scientific Objective: Defining Methods for LAIC 
detection and Understanding the physics behind the LAIC

Project Website: safe-swarm.ingv.it
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http://www.esa.int

Swarm 3-satellite mission
Launch on 22 Nov. 2013
A,C at 440 km (now)
B     at 510 km
Appropriate combination of

(em & particles) sensors

A

B

C

On Researchgate, too* Pulinets & Ouzonouv, 2011
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Geosystemics1, an integrated holistic vision
Patterns in the EQ preparation phase**:

3. Ionospheric anomalies 
(short term) 

(from satellites or ionosondes or GPS)
- Swarm magnetic field 
- Swarm ionospheric density
- Ionosonde parameters
- TEC (GPS based)

2. Atmospheric anomalies
(short term) 

- Thermal/WV/O3 anomalies 
1. Seismic & Magnetic field fore-patterns

- Acceleration (S-Shape)

•Geosystemics Research Group, INGV

**The goal is not EQ Prediction, nowadays impossible, but to 
understand the process of earthquake preparation and 
geospheres coupling based on the Lithosphere-Atmosphere-
Ionosphere Coupling (LAIC). 

1 De Santis 2009, 2014; De Santis & Qamili, 2015; De Santis et al., 2015, 20191
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Lithosphere

Atmosphere

Ionosphere

1. SAFE Project: The vision

SAFE Project 2015/16
SAFE Project –extension 2018/19 

(De Santis et al. 2015;
adapted from Tsai et al. 2004)



Swarm satellites: 
the sensors at the back
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Scalar1 & Vector Field2 Magnetometers

1 Optically-pumped metastable helium-4 magnetometer 2Ring core fluxgatemagnetometer

The sensors represent the cutting edge technology in their field

S
w

a
rm

 M
is

s
io

n



Swarm: 
the sensors at the front

Accelerometer, GPS & S-band Antennas, and Electric Field instruments
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Pre-EQ anomaly detection:
Methods & Evaluations

1. Single case studies
- single anomaly detection  (B=mag.field, Ne=elec.density)

thresholds kt(t),kFFT(f)   (t,f=time,frequency domain)
- pattern detection

S-shape cumulative number of anomalies
2. Worldwide statistics

- Real anomalous data (B/Ne) vs EQs analyses
- Random anomaly simulations vs real EQs analyses
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Automatic detection of 
magnetic/electron density anomalies
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Two different methodologies:

• MASS algorithm

• WARP algorithm

RMS

Frequency

Frequency

Energy

MASS = MAgnetic Swarm anomaly detection by Spline analysis
WARP = Wavelet Anomaly Research Program

Location

Duration



Automatic detection of anomalies: 
MASS algorithm
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1. Estimation of the Root Mean Square (RMS) of the whole track (±50° geomag. lat.)
2. Calculus of rms in a moving small window of 7.0° (settable) in an area (Dobrovolsky area, area with fixed radius)
3. An output file reports how many windows with rms > kt x RMS are found for each magnetic component + scalar 

intensity for each track during magnetic quite time (|Dst| ≤ 20 nT and ap ≤ 10 nT)

MASS = MAgnetic Swarm anomaly detection by Spline analysis
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Automatic detection of anomalies: 
MASS algorithm

kt =3.0 for Ne
kt =2.5 for By



dX/dt, dY/dt, dZ/dt, dF/dt, geogr. map

Alpha satellite (460 km)

Case study: M7.8 Nepal 25 April 2015 06:26UT

Search for single anomalies & patterns

Cumulative # EQs and of magnetic 
anomalies during night & magnetic 
quiet times 
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Seismic

Magnetic

Dobrovolsky (1979) area:
R (km) = 100.43M = 2250 km
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S-shape

rms>kt*RMS  (kt =2.5)
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Retrospective Multi-parameter Analyses

-------------Magnetic-------------- -Electron Density-

NeSTAD: Electron Density Single Track Anomaly Detection
MASS: MAgnetic Swarm anomaly detection by Spline analysis 

NeLOG: LOGarithm of electron density anomaly detection 

AMR: Accelerated Moment Release
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Geosystemics

i.e. FAKE or REALITY?
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EQ Magnitude M

Are the anomalies found in the 12 case studies 
random or EQ-related?
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Hypothetical contribution 
by random anomalies
No relation with magnitude
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Geosystemics

Hypothetical contribution 
by random anomalies
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weak relation with magnitude
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EQ-related anomalies
#anomalies prop. with M
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Are the anomalies found in the 12 case studies 
random or EQ-related?

i.e. FAKE or REALITY?
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Geosystemics

NNe = 82.65*M -506.2

r = 0.898

Electron Density (Ne) 

Normalized Number of 
anomalies increases with 
magnitude more than 
random simulations
they are EQ-related!!

Contribution 
by simulated random anomalies
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Are the anomalies random or EQ-related?
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NY = 73.74*M -363.8

r = 0.741

Magnetic signal (By)

De Santis et al., Atmosphere, 2019

Real anomalies



Worldwide statistics
with Superposed Epoch
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EQ #1

.
..

.

.

EQ #N

.
.

Then we overlap all N (= #EQs) 
diagrams in a unique plot. 

Concentrations of anomalies 
point out when/where anomalies 
usually occur (red circles)

For each EQ we draw a 
space/time diagram that we fill 
with the detected anomalies 
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Worldwide statistics
with Superposed Epoch

EQ

Day w.r.t. EQ 090 days before 30 days after

D
is

ta
n

c
e 

fr
o

m
 e

p
ic

en
te

r
(d

e
g

re
e

s)
~ 1300 M5.5+ EQs
(USGS source)
1 Jan 2014-31 Aug 2018

#anomalies/area

Random=no concentration of anomalies
EQ-related=concentration of anomalies

22

Ne(DEMETER)
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𝑑 =

𝐷𝑀𝐴𝑋

𝐷0
𝑟𝑒𝑎𝑙

𝐷𝑀𝐴𝑋

𝐷0
𝑟𝑎𝑛𝑑𝑜𝑚

𝑛 =

𝐷𝑀𝐴𝑋

𝐷0
𝑟𝑒𝑎𝑙 

−
𝐷𝑀𝐴𝑋

𝐷0
𝑟𝑎𝑛𝑑𝑜𝑚

𝑟𝑎𝑛𝑑𝑜𝑚
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Worldwide statistics  (random simulation)

RANDOM anomaly space-
time distribution

Declusterized Seismic
USGS Catalog
geom. Lat. ≤ |50°|
1312 M5.5+ shallow EQs

1 Jan 2014-31 Aug 2018

RANDOM example

~ 1.3K EQs
~59K random 

anomalies
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d≈ 1
n ≈ 1
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Positive 
statistics 
if d ≥1.5       

n≥4
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Worldwide statistics  Electron Density
Thresholds on Ne data
kt = 3.0
Declusterized Seismic
USGS Catalog
geom. Lat. ≤ |50°|
1036 M5.5+ shallow EQs

1 Jan 2014-31 Aug 2018

The largest maximum 
anticipates EQs by 4-
10 days, confirming
previous results by 
Demeter

~ 1.3K EQs
~ 59K anomalies

24

Other larger
concentrations (70-80 and 
44-52 days before EQs and 
10-12 days after). 

d=1.5
n=8.7

Swarm Electron density analysis, kt = 3.0
only quite time (|Dst| ≤ 20 nT, ap ≤ 10 nT), 24H
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Positive 
statistics 
if d ≥1.5       

n ≥4

A. De Santis, Pre-earthquake signatures in ionosphere, 2019 Italian URSI Meeting, Pisa, 26 September 2019



Worldwide statistics Electron density Signal:
Distribution of anomalies on land/sea

Dobrovolsky (Db) areaConsidering kt=3.0

anomalies
Anomalies 
associated 
with EQs

Anomalies 
associated with 

EQs in pMAX
EQs EQs with 

anomalies

EQs with 
anomalies
in pMAX

Land 17535
(29.9%)

1336
(22.4%)

9 
(10.0%)

243 
(18.5%)

148
(20.5%)

3 
(9.1%)

Sea 41157
(70.1%)

4622
(77.6%)

81
(90.0)%

1069 
(81.5%)

574
(79.5%)

30
(90.9%)

Sea EQs are slightly favored



Worldwide statistics  Magnetic Signal

Thresholds on quiet
magnetic data
kt =     2.5

Declusterized Seismic
USGS Catalog
geom. Lat. ≤ |50°|
1312 M5.5+ shallow EQs
1 Jan 2014-31 Aug 2018

Swarm Magnetic quite time (|Dst| ≤ 20 nT, ap ≤ 10
nT) analysis with the following thresholds:
kt = 2.5.

The maximum 
anticipates EQs by 
around 20 days
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~ 1.3K EQs
~22K anomalies
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Ratio  
between real 
max 
concentration 
w.r.t. random

d= 2.0
How many 
standard dev.

n=16.6

Other concentrations at
85 days and after 6 days

Positive 
statistics 
if d ≥1.5       

n ≥ 4
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Anomalies
Anomalies 
associated 
with EQs

Anomalies 
associated with 

EQs in pMAX
EQs

EQs with 
anomalies

EQs with 
anomalies
in pMAX

Land 5927 (26.8%) 581
(20.7%)

8 
(15.1%)

243 
(18.5%) 107 (19.9%) 2 

(8.3%)

Sea 16215 (73.2%) 2224 (79.3%) 45
(84.9)%

1069 
(81.5%) 431 (80.1%) 22 

(91.7%)

Worldwide statistics Magnetic Signal:
Distribution of anomalies on land/sea

Dobrovolsky (Db) areaConsidering kt=2.5

Sea EQs are slightly favored
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Could we explain this with something
physical instead of errors?

With the Superposed Epoch Approach we notice some 
concentrations at different times before EQs
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Confirming Rikitake law (1987)

Ne

B

Log DT(days)=a+bM a≈-2 (±1); b ≈0.8 (±0.2)

a=-3.3 (±0.8); 
b=0.8 (±0.1)

a=-3.9 (±0.8);
b=0.9 (±0.1)

De Santis et al., under review
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Explaining Rikitake law (1987) as a 
diffusion process in the lithosphere

Log DT(days)=a+bM -a≈2-4; b≈0.8

Adopting a lithospheric process of stress diffusion across the Dobrovolsky area, we can write:

𝑅஽௕ =  4πDDT (1)  

where D is the diffusivity; DT is the precursor time if the first precursor appears at the beginning of the stress

evolution. RDb is the spatial distance (in km) of the anomaly from the earthquake epicentre, as:

     𝑙𝑜𝑔𝑅஽௕ = 𝛽𝑀 (2)          (β=0.43 and M=earthquake magnitude). 

If we replace eq. (1) RDb in (2), the Rikitake law coefficients become:

a=-log(4πD) (3a) and           b=2b (3b)

From our results we confirm the relationship (3b) and even deduce D from (3a) (putting the intermediate value a=-3): 

D≅ 100 m2/s   of the same order of slow earthquakes (Ide et al. 2007)
De Santis et al., under review



5. Conclusions/1

5.1 LAIC effects can be detected by space
(but with caution and together with ground data observations!) 

Messages to  take home
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5.2 Satellite & Ground data analysis in SAFE resulted quite successful for 9 
out of 12 largest EQs                                                            

5.3 Most of the anomalies are really EQ-related anticipating EQs by few 
days to about three months, but not all EQs couple with above 
atmosphere-ionosphere

5.4 EQs under the sea are more favoured than those in land
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5.7 Warning
- Statistical correlation anomalies vs. EQs does not mean EQ prediction: 
uncertainties about position, time and magnitude are too large. 
- False alarms are many and mostly due to natural irregular variations of 
ionosphere. We do not expect to have continuous ionospheric perturbations 
and the satellite is “above” a seismic area only a few minutes per day. 
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5.8 More case studies, more satellites and more extended worldwide 
statistical analyses are needed to confirm our results and to understand 
which is the best physical model of LAIC 

5. Conclusions/2
Messages to  take home

5.5 Largest concentrations are 2 times larger than random simulations, 
10-20 times outside their standard deviations

5.6 We confirm Rikitake law and explain it as a lithospheric diffusion 
process
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The Physics: LAIC  Models

Freund, 2011; Kuo et al., JGR 2014

Current Dynamos for LAIC coupling

1. Dynamo from stressed rocks (Freund, JAES, 2011)
2. Dynamo from injection of radon and charged aerosols

(Pulinets & Ouzounov, JAES 2011; Sorokin and Hayakawa, 
MAS 2013)
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Pulinet& Ouzounov, JAES 2011
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