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Making the ionosphere in one slide…

Courtesy of J.Damaceno

https://igs.org/

Credits: 
NASA's Scientific
Visualization Studio



Ionosondes
(HF remote soundings)

GNSS receivers
(L-band remote soundings)

HF Sounding exploits reflection
GNSS Sounding exploits refraction

RefractionReflection

Monitoring the ionosphere…



Total Electron Content

Courtesy of J.Damaceno

https://igs.org/

Exploiting GNSS measurements to estimate the 
Ionospheric Total Electron Content (TEC)



A lot of external forcing…

Credits: NASA
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Input

Ouput

𝑦=𝑓(𝑥)

Physics Informed ML models, 
Data assimilation models, 

Explainable AI

How to model and forecast the ionospheric features?



Hamilton et al., 2022

Leverage physics to ease Machine Learning training task
How to do it…

Physics-informed Machine Learning (PIML)

Di et al., 2023
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Regression vs Classification



Regression vs Classification



How will the Global TEC change in the next 24 hours?



The  extensive application of ML techniques in ionospheric modeling the recent years demonstrate relevant
forecasting efficiency. The benefits may be greater through the coupling of physics-based models with ML. 
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Xiong et al., 2021
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Cesaroni et al., 2020
Liu et al., 2020
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Tebabal et al., 2018
Hang et al., 2014
Kharakhashyan et al., 2021

• CNN/CRNN
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Yang et al., 2022
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What the ionospheric community did so far for TEC forecasting?

Tsagouri et al., 2023
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NARX model for TEC forecasting 

Cesaroni, C., Spogli, L., Aragon-Angel, A., Fiocca, M., Dear, V., De 
Franceschi, G., & Romano, V. (2020). Neural network based model for 
global Total Electron Content forecasting. Journal of space weather and 
space climate, 10, 11.



NARX model for TEC forecasting 

Cesaroni et al., 2020
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NARX model for TEC forecasting 

Cesaroni et al., 2020



Cesaroni et al., 2020

NARX model validation - Overall

𝑅𝐺𝐸𝐶 𝑡 =
∑ ∆𝑇𝐸𝐶(𝑖, 𝑗)௜,௝

𝑁

wrt UPC GIM 
final product



NARX model validation - September 2017 storm

𝑅𝐺𝐸𝐶 𝑡 =
∑ ∆𝑇𝐸𝐶(𝑖, 𝑗)௜,௝

𝑁

wrt UPC GIM 
final product

Cesaroni et al., 2020



Cesaroni et al., 2020

NARX model validation - September 2017 storm

Model «Frozen» Ionosphere (Naive model)



Model

NARX model validation - September 2017 storm

Cesaroni et al., 2020

«Frozen» Ionosphere (Naive model)
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Recursive NN vs Convolutional NN 

Molina, M. G., Namour, J. H., Cesaroni, C., Spogli, L., Argüelles, N. B., & Asamoah, E. N. (2025). Boosting total electron content 
forecasting based on deep learning toward an operational service. Journal of Atmospheric and Solar-Terrestrial Physics, 268, 
106427.



Molina et al., 2025

Recursive NN vs Convolutional NN 



TEC data from 2005 to 2016

Recursive NN vs Convolutional NN 

Molina et al., 2025



RNN and CNN results
LSTM

GRU

CNN

Molina et al., 2025
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Asamoah, E. N., Cafaro, M., Epicoco, I., De Franceschi, G., & Cesaroni, C. (2024). A stacked machine learning model 
for the vertical total electron content forecasting. Advances in Space Research, 74(1), 223-242.

Features ranking

Going beyond Kp…

Pearson correlation coefficient among external driver



Features ranking

Nana Asamoah et al, 2024a 
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Base Learners
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Base Learners

Nana Asamoah et al, 2024a 

ELM



Stacked model
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Loss Function for regression problems
The loss function is the bread and butter of modern machine learning; it takes your algorithm from theoretical to 
practical and transforms neural networks from glorified matrix multiplication into deep learning.

https://www.datarobot.com/
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Custom Loss Functions
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Asamoah, E. N., Cafaro, M., Epicoco, I., De Franceschi, G., & Cesaroni, C. (2024). Physics-informed loss functions for 
vertical total electron content forecast. Earth Science Informatics, 17(3), 2569-2586.
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Custom Loss Functions: some results…

𝑳𝒐𝒔𝒔 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑸𝒖𝒂𝒏𝒕𝒊𝒕𝒊𝒆𝒔 𝒊𝒏𝒗𝒐𝒍𝒗𝒆𝒅

𝑚𝑠𝑒_𝑣0

𝑚𝑠𝑒_𝑣1 𝐷𝑠𝑡, 𝐵௭

𝑚𝑠𝑒_𝑣2 𝐷𝑠𝑡, 𝐵௭, 𝑑𝐵௭ 𝑑𝑡⁄

𝑚𝑠𝑒_𝑣3 𝜖

𝑚𝑠𝑒_𝑣4 𝜖, 𝐷𝑠𝑡, 𝐵௭

𝑚𝑠𝑒_𝑣5 𝜖, 𝐷𝑠𝑡, 𝐵௭, 𝑑𝐵௭ 𝑑𝑡⁄

Nana Asamoah et al, 2024b 

Guam Dataset



Custom Loss Functions: some results…

𝑳𝒐𝒔𝒔 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑸𝒖𝒂𝒏𝒕𝒊𝒕𝒊𝒆𝒔 𝒊𝒏𝒗𝒐𝒍𝒗𝒆𝒅

𝑚𝑠𝑒_𝑣0

𝑚𝑠𝑒_𝑣1 𝐷𝑠𝑡, 𝐵௭

𝑚𝑠𝑒_𝑣2 𝐷𝑠𝑡, 𝐵௭, 𝑑𝐵௭ 𝑑𝑡⁄

𝑚𝑠𝑒_𝑣3 𝜖

𝑚𝑠𝑒_𝑣4 𝜖, 𝐷𝑠𝑡, 𝐵௭

𝑚𝑠𝑒_𝑣5 𝜖, 𝐷𝑠𝑡, 𝐵௭, 𝑑𝐵௭ 𝑑𝑡⁄

Nana Asamoah et al, 2024b 

Guam Dataset



Our roadmap toward a Physics-Informed forecasting model

First TEC forecasting 
paper published by INGV
Cesaroni et al., 2020

Collaboration with 
Universidad
Nacional de 
Tucumán

Collaboration with 
Università del 
Salento

Rigorous features 
ranking + stacked 
model

Introducing physical
constraints into the 
ML model (custom 
loss functions)

Bayesian approach
to improve
trustworthiness

2020 2021 2021 2023 2025

First model
development

Testing different
DL models

Testing different
features

Introducing
PIML model

Uncertainty
quantification

Based on NARX and 
NeQuick2 model

Testing of RNN 
and CNN  

Collaboration with 
Università del 
Salento



Uncertainty quantification: Bayesian NN
The measurements and modeling of the ionosphere are particularly challenging due to its complexity and variability,
both regular and irregular. This complexity increases the uncertainty of results when forecasting future instances.
Therefore, it is necessary to quantify these uncertainties in order to obtain reliable forecasts.
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Regression vs Classification



Will there be a LSTID in the next 3 hours?



Large-scale Travelling Ionospheric Disturbances

Zakharenkova et al., 2016

LSTID in a nutshell



Energy injection at high 
latitude inducing Joule 

heating

Geomagnetic 
field 

disturbances 
detected along a 
meridional chain 

of 
magnetometer 

at ground

Equatorward 
Propagation of 

LSTIDs from 
auroral latitudes 

Detection of 
LSTIDs

LSTIDs occurrence chain of events from the auroral oval to middle latitudes

LSTID in a nutshell



• Characteristics from VI Ionospheric 

sounding (MUF(3000)F2).

• Network of DPS4D with stations 
working synchronized.

• GIRO DIDBase Fast Chars database 
http://giro.uml.edu/didbase/scaled.php

INPUT - Detection of TID-like variation

Detect coherent TID-like 
variations by spectral 
analysis. 

- TIDs contribution to data variability.
Application of the Parseval’s relation [A(ω) vs A(T)]

- Estimation of the velocity and azimuth of the TID

The Detection method: HF-Interferometry

SPCont(%
)

LSTID detection (HF)



•HF-EU index

⮚One index for the whole network. 

⮚ It is the product of the average intensity of the TID 
(related to the spectral contribution) multiplied by 
the area affected (number of stations).

⮚ The thresholds have been established by statistics 

⮚ 0 means no data

⮚ 0.1 means nothing detected

OE_HFI_YYYYMMDDHHmm_COND.log files every 5 minutes

LSTID detection (HF)



HF-INT: Catalogue of events
• Visual inspection to determine LSTIDs 

events

⮚ Looking for coherent velocity propagation

⮚ 1604 LSTIDs events detected and recorded 
above Europe between 01/2014 and 12/2022

• Determination of onset time and duration

⮚Approximative

• Average of the main characteristics of the 
TID for all stations and during the whole 
event.

Included
in the 

catalogue

Not included
in the 

catalogue

LSTID detection (HF)



• Keograms are latitude-time plots, optimal to 
highlight NS propagation of LSTID

• Data gathered from EUREF Permanent GNSS 
Network

• Stations belonging to 10-25 Longitude

• Reduction of stations with KNN for optimal 
coverage

• GFLC of phase measurements for GPS, GLONASS, 
Galileo and BeiDou

• Verticalization of zero-averaged GFLC 

• Detrended with 3rd order Savitzky-Golay filter on a 
1.5-hour window

• dTEC median on bins of 5km NS and 1 minute in 
time

MATLAB code for GFLC and IPP computation is available 
here:
https://github.com/mguerra96/MyIonosphere.git

(Bottom panels are showing IE index)

LSTID detection (GNSS)
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Unsupervised LSTID Extraction from Keograms

• Preprocessing

o Adjust dTEC values based on solar zenith angle.

• Segmentation

o Define ROI as connected regions in the keogram.
o Refine ROI using a clustering algorithm.

• Feature Extraction

o Use RANSAC (Random Sample Consensus) 
algorithm to estimate ROI speeds.

M.A. Fischler and R.C. Bolles. Random sample consensus: A paradigm for model f itting
with applications to image analysis and automated cartography. Communications of the 
ACM, 24(6):381–395, 1981.

LSTID detection (GNSS)
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Developing the ML models: catalogue-based forecasting

● The problem is framed as a multivariate time-series

binary classification 

● We employed the HF-INT refined LSTID catalogue 

provided by Ebro Observatory, consisting of 1604 LSTID 

events detected above Europe between 01/2014 and

12/2022

● The database is generated by leveraging a network of 

ionosondes covering the European sector

LSTID forecasting



LSTID forecasting approach

Ground truth

Features

Independent data for validation



● Easily understandable and adaptable syntax
● One of the top languages for training ML models

● Category & Boosting (gradient boosting on decision trees)
● A symmetric balanced tree architecture leads to an efficient CPU implementation, 

decreases prediction time (great for real-time inference) and controls overfitting
● Categorical and missing values are handled natively
● Integrates SHAP to break predictions into features’ contributions

● Efficient optimisation framework for model hyper-parameters tuning
● Machine Learning Operations (MLOps) to organise and manage ML experiments

● The SHapley Additive exPlanation (SHAP) framework allows to test features 
influence on the model output from both global and local aspects

● Enhancement for interpretability and explainability of the model – very desirable 
features in potentially high-risk settings

Our ML Stack



Here's how CatBoost works in simple terms:

1.Boosting with Trees: CatBoost builds a series of decision trees (weak 
learners) one after another. Each tree aims to fix the errors made by the 
previous trees, gradually improving the overall model's accuracy.

2.Handling Categorical Data: A unique feature of CatBoost is its ability to 
handle categorical data (like "color: red, blue, green") without needing to 
convert these categories into numbers manually. 

3.Order of Rows: Unlike other boosting algorithms, CatBoost takes the order 
of training data rows into account. It randomly shuffles data to make the 
predictions more stable and less sensitive to data order. 

Yao et al., 
2021

CatBoost

Ye et al., 
2025



How we can explain the model?



23/12/2022 22:20, LSTID lasted 1.5h

16:00

19:00

22:00

00:30

Threshold=0.5

SHAP values: local interpretation



Local to Global interpretation



𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑃 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
𝐹ଵ =

𝑃 ∗ 𝑅

𝑃 + 𝑅

Precision is a good measure to determine, when the 
costs of False Positive is high

Recall actually calculates how many of the Actual 
Positives our model capture through labeling it as 
Positive (True Positive)

F1 Score might be a better measure to use if we need 
to seek a balance between Precision and Recall AND 
there is an uneven class distribution (large number of 
Actual Negatives).

False 
Positive

True 
Negative

False 
Negative

True 
Positive

How to evaluate the performance?



The model results in 3 distinct operating modes, tailored for scenarios with varying relative costs of false positives/negatives

High-precision
Great when the cost of false positives is the 
most significant
But not all the events are predicted, or 
prediction can be “intermittent”

Balanced
Great to strike a balance between precision 
and sensitivity
But does not take into account the relative 
cost of false positives and false negatives

High-sensitivity
Great when the cost of false negatives is 
the most significant
But the user can get a great deal of alerts 
(alert fatigue)

Model Operational Modes



Validation on case events: 13-14/03/2022



Validation on case events: 13-14/03/2022

HF measurements from Athens (Greece)

GNSS measurements over Europe



Take home message
ML/DL can support the forecasting of the ionospheric features but…

• Select the proper algorithms is not an easy task

• Features to be used as input to the models should be accurately selected by means of proper features importance
evaluation tools (e.g. SHAP values)

To go beyond the state-of-the-art modelling capabilities, we (probably) need to…

• Use several ML/DL algorithms in an ensemble modelling approach

• Include physical constraints to properly guide the ML/DL models during the training phase

To move towards operational models, we need to…

• Be able to estimate the reliability of our outputs (Bayesian NN could be the answer)
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